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OMICS revolution over the past decade

• Increased ability to measure large number
of ”parts” of the biological systems and their
activities

• Genes and their expression
• Proteins and their modifications
• Small molecules (metabolites) and their

reactions
• Imaging technologies, incl. in vivo
• Microbial populations
• ”single cell” measurements
• etc etc
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Metabolomics as a platform for systems biology

SENSITIVITY
As proven via the formalism of Metabolic 
Control Analysis; small changes in activities 
of individual enzymes lead to small changes 
in metabolic fluxes, but can lead to large 
changes in metabolite concentrations



Metabolomics platform
Experiment design + Analytical chemistry + Chemometrics + Bioinformatics



Why measure lipids?Why measure lipids?
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Platforms

UPLC-TOF/MS lipidomics
(major phospholipids, sphingolipids, 
acylglycerols)
10-15μl serum sample used

GCxGC-TOF/MS
(global metabolome)
20μl serum sample used



MZmine 2.0: data processing for metabolomics

http://mzmine.sourceforge.net



Outline

• 1 genome? 
• Genetic factors affecting the metabolic phenotype

• Metabolic states & development
• Changes of metabolic phenotypes with age

• Beneficial autoimmunity? 
• Metabolic phenotypes & immune response

• Drug response phenotyping
• Tissue-specific drug effect on metabolic phenotypes



1 genome?



Gut microbes

We carry 10 times
more microbial cells
as the host
mammalian cells
(~100 trillion
bacteria).

Bäckhed et al, Science (2005)



Human gut microbes are associated with obesity and lipid metabolism

Ley et al (Nature, 2006)Ley et al (Nature, 2006)
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Serum lipidome is affected by gut microbial composition
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Metabolic states & development



Sample series

• 59 children between 3 months and 4 years of age
• 27 boys
• 32 girls

• Serum sample collection every 2-7 months
• Children remained healthy (no chronic disease) 
throughout the follow-up

• 11 samples per child on average
• Samples from the Type 1 Diabetes Prediction & 
Prevention study (DIPP)



”Normal” metabolome changes with age

• Describe as progression of metabolic states
• Apply Hidden Markov Model methodology
to describe the states and their progression

Nikkilä et al, Mol. Syst. Biol. (2008)



First five years: progression not the same for each child
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Major differences between the states

Girls Boys
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Nikkilä et al, Mol. Syst. Biol. (2008)

• Upregulation of proinflammatory lysophospatidylcholines
and short chain saturated triacylglycerols near 1 year

• Dietary triacylglycerols upregulated near 3 years of age



Developmental metabolic differences between girls
and boys
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Nikkilä et al, Mol. Syst. Biol. (2008)

Sphingomyelins
consistently
elevated in girls



Concept: metabolic states and disease

Metabolic phenotypes may
help detect subtle changes
related to early disease
development or responses to 
therapeutic interventions



Beneficial autoimmunity?



Type 1 diabetes 

• T1D is a chronic autoimmune disease caused by 
destruction of the insulin-producing beta cells in the 
pancreatic islets of Langerhans.

• In most Western countries, the incidence has increased 
by 3% per year during the past 50 years. 

• The disease is multifactorial and polygenic showing tight 
linkage with certain HLA-DQ and DR alleles. 

• As only a fraction of those at genetic risk develop T1D, 
the impact of environment on disease pathogenesis is 
obvious. 

• A symptom-free prediabetic period is characterized by T 
lymphocyte accumulation to the islets.



Persisting unknowns 

• Disease risk and time of onset? 

• Triggers of the disease process(es)?

• Mechanisms regulating progression 
towards T1D?

• Prevention?



JDRF Center for Prevention of Type 1 Diabetes in Finland

• Type 1 Diabetes Prediction and Prevention 
Project (DIPP) launched Nov 7, 1994 in Turku

• Oulu joined 1 yr and Tampere 3 yrs later
• 20% of newborns screened in Finland

• SYSDIPP – Systems Biology Approach to 
Biomarker Discovery in Type 1 Diabetes started 
in 2005 (Tekes FinnWell Program)
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Sample series
Batch City of 

birth
Study Year of birth Age at

diagnosis
Number of
progressors

Number of
non-progressors

Number of
samples

1 Turku DIPP 1994-2001 1-11y 13 26 441

2 Turku DIPP 1996-1999 1-6y 10 13 185

3 Oulu DIPP 1996-2001 1-8y 27 28 483

4 Turku STRIP 1990 3-13y 6 6 87

TOTAL 56 73 1196

0 1000 2000 3000 4000 5000

5e
-0

1
5e

+0
0

5e
+0

1
5e

+0
2

5e
+0

3

clinLipALL[, 10]

da
tL

ip
A

LL
[, 

2]

Sample age (days)

[G
P

C
ho

(1
8:

0/
0:

0)
] μ

m
ol

/l

No effect of 
sample age
(r=-0.05, P=0.94)



Age-based comparison

0 3 6 9 12 15 18 Time from birth (months)
…

Progressor 1

Non-progressor 1

Progressor 2

Non-progressor 2

Aab+

Aab+

Dg

Dg

Age based comparision
of molecular profile changes
between cases and controls



Ether-linked phosphocholines decreased in individuals who 
later developed autoimmunity and Type 1 Diabetes

Plasmalogens are most 
abundant class of ether 
linked phospholipids, 
known as endogenous 
antioxidants.
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Ethanolamine plasmalogen also decreased
2

5
10

20 Non-progressors

Progressors

GPEtn(O-18:1(1Z)/20:4)

C
on

ce
nt

ra
tio

n

1000   2000  3000  Age (days)

m/z

%

0

100

Ae_Statinpool_pos_msms1_080906 37 (6.418) Cm (36:39) 9: TOF MSMS 752.56ES  
270361.2668

184.0775

119.0224
203.1847

294.3123
227.1726

752.5571

392.2928

579.5295393.3058

394.2751
484.2725 570.5085

580.5361

611.5439 751.5991
614.5161

754.6107

755.6092

757.5276

769.8936

361 392
752

ESI+ (MS/MS)

Plasmalogens are most 
abundant class of ether 
linked phospholipids, 
known as endogenous 
antioxidants.

0
5

10
15

Progressors Non-progressors

Age 1 year

GPEtn(O-18:1(1Z)/20:4)
p=0.005

C
on

ce
nt

ra
tio

n

0
5

10
15

Progressors Non-progressors

Age 6 years

GPEtn(O-18:1(1Z)/20:4)
p=0.019

C
on

ce
nt

ra
tio

n



High risk: DR3-DQ2/DR4-DQ8
Medium risk: DR4-DQ8/x
(x = any haplotype except DR2-DQ6, 
DR5-DQ7 or DR3-DQ2)

Can differences be explained
by genetic risk?

No significant association 
of HLA-associated genetic
risk and the lipid profiles



Seroconversion for islet autoimmunity
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Lipidomic profiles near seroconversion for islet 
autoimmunity

Progressors 3-6 months prior to seroconversion (Ser-) and 3-6 months 
after seroconversion (Ser+), with matched non-progressors.
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Implications

•Our findings clearly favor early 
immunomodulation, rather than 
immunosuppression, as a preventive 
therapy, with the aim to boost the beneficial 
component of autoimmunity. 

•The factors leading to metabolic stress and 
autoimmune responses clearly need to be 
investigated in further studies in the context 
of autoimmune diseases in general.



Drug response phenotyping



Statins

• Lipid lowering drugs
• Reduction in atherosclerotic complications
• Higher doses of statins are being 
recommended today for lowering of cholesterol
Increased risk of myopathy (muscle toxicity)

• Mechanisms or biomarkers of myopathy not 
known



Statin induced muscle toxicity

• Muscle complaints without creatine kinase
elevations occur in 5-10% of patients in 
clinical trials

• However, the complaints occure with similar
frequency in statin and placebo groups, thus it
is commonly believed they are not drug related

• In recent PRIMO study (N=7924, high dose
statins) 10.5% patients complained of 
muscle pain, highest rate of 18% 
associated with simvastatin treatment



High dose statin trial – strategy to elucidate early 
mechanisms of statin induced myopathy
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2 drop outs

14 completed
treatment

16 assigned

1 drop out

15 completed
treatment

16 assigned

1 drop out

16 assigned

15 completed
treatment

atorvastatin 40 mg/dsimvastatin 80 mg/dPlacebo

48 subjects were recruited and randomized

Study design

H. Päivä et al, Clin Pharmacol Ther (2005)

Muscle biopsies were
obtained at baseline
and at the end of 8 

weeks follow-up
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Mitochondrial DNA in skeletal muscle

BA Schick et al (Clin Pharmacol Ther. 2007 )



Pathway analysis; GSEA (muscle)

• No significant changes in placebo or atorvastatin groups
• Several upregulated pathways in simvastatin group (FDR q<0.1)



PLS/DA on combined serum lipid and muscle gene expression 
data (4 pathways: PLC, eicosanoid, sodd, and tubby)
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PLS/DA on combined serum lipid and muscle gene expression 
data (4 pathways: PLC, eicosanoid, sodd, and tubby)
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lasso regression of lipid data on ALOX5AP

Measured

Fi
t

• Shrinkage regression method, which performs 
continuous variable selection causing some of the 
regression coefficients to be exactly zero

• Shrinkage reduces the variance of the regression 
estimates

Laaksonen et al, PLoS ONE (2006)



Concept: Drug response phenotyping using systems approach
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Summary

• Medical systems biology aims to elucidate
complex networks linking phenotypes with genes
and environment

• Biofluid metabolome is a quantitative measure of 
the phenotype

• Metabolic phenotype depends on genetic factors
reflected in host and microbial cells

• Changes of metabolic phenotypes can be
described in terms of metabolic states

• Autoimmunity may be physiological and 
beneficial response to metabolic stress

• Tissue-specific drug responses are reflected in 
changes in metabolic phenotypes



http://sysbio.vtt.fi/

High dose statin trial
• Reijo Laaksonen (Zora

Biosciences & Tampere 
University Hospital)
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